Solving Quadratic Equations

Equations such as $x^2 = 64$, $x^2 - 5x = 0$, and $x^2 + 4x = 5$ are called quadratic equations. This is because in each of these equations the greatest exponent of any variable is 2.

<u>Standard Form of Quadratic Equations</u>: $ax^2 + bx + c = 0$

Before you select the method that you will use to solve a quadratic, you must use inverse operations to get the equation to equal **zero** (if necessary).

When solving quadratic equations, we can use two methods:

- 1) Factoring
- 2) Quadratic Formula

Solving Quadratic Equations Using Factoring:

To Solve a Quadratic Using Factoring:

- 1) Put the quadratic equation into standard form (above).
- 2) Factor the quadratic expression.
- 3) Set each factor equal to zero.
- 4) Solve each equation.
- 5) Check each **root** in the original equation.

For example:	$x^2 + 4x = 5$
	-5 -5
	$\mathbf{x}^2 + 4\mathbf{x} - 5 = 0$
	(x+5)(x-1) = 0
	x + 5 = 0 $x - 1 = 0$
	-5 -5 +1 +1
	x = 5 or $x = 1$

Now, check in the original!!!

Solve each quadratic equation using factoring:				
1) $x^2 - 3x + 2 = 0$	2) $z^2 - 5z + 4 = 0$	3) $x^2 - 8x + 16 = 0$		
4) $r^2 - 12r + 35 = 0$	5) $c^2 + 6c + 5 = 0$	6) $m^2 + 10m + 9 = 0$		
7) $x^2 - 49 = 0$	8) $z^2 - 4 = 0$	9) $m^2 - 64 = 0$		
10) $3x^2 - 12 = 0$	11) $d^2 - 2d = 0$	12) $s^2 - s = 0$		
13) $2x^2 - 5x + 2 = 0$	14) $3x^2 - 10x + 3 = 0$	15) $3x^2 - 8x + 4 = 0$		
16) $5x^2 + 11x + 2 = 0$	17) $y^2 = 8y + 20$	18) $x^2 = 9x - 20$		
19) $x^2 = 30 + x$	20) $2x^2 - x = 15$	21) $x^2 + 3x - 4 = 50$		

$22) 2x^2 + 7 = 5 - 5x$	23) $x(x-2) = 35$	24) $y(y-3) = 4$

 $25) \underline{x+2}_{2} = \underline{12}_{x} \qquad 26) \underline{y+3}_{3} = \underline{6}_{y} \qquad 27) \underline{x}_{3} = \underline{12}_{x}$

28) $10x^2 - 5x + 11 = 9x^2 + x + 83$ 29) $4x^2 + 3x - 12 = 6x^2 - 7x - 60$

Solving Quadratics Using the Quadratic Formula:

Not every quadratic equation can be solved by factoring. In this case, we need to use the quadratic formula.

Quadratic Formula:
$$x = -(b) \pm \sqrt{b^2 - 4ac}$$

2a

To Solve a Quadratic Using the Quadratic Formula:

- 1) Put the quadratic equation into standard form (above).
- 2) Write out the formula and what a, b, & c stand for.
- 3) Substitute for each variable.
- 4) Split into two separate equations (setting each equal to zero) and solve.
- 5) Check each **root** in the original equation.

For example:

$$2x^{2} + x = 6$$

$$\frac{-6 - 6}{2x^{2} + x - 6} = 0 \quad ***Can't \text{ be factored, use the formula.}$$

$$x = \frac{-(b) \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$a = 2, b = 1, c = -6 \quad x = \frac{-(1) \pm \sqrt{(1)^{2} - 4(2)(-6)}}{2(2)}$$

$$x = \frac{-1 \pm \sqrt{1 + 48}}{4}$$

$$x = \frac{-1 \pm \sqrt{49}}{4}$$

$$x = \frac{-1 \pm 7}{4}$$

$$x = \frac{-1 + 7}{4} \quad x = \frac{-1 - 7}{4}$$

$$x = \frac{6}{4} \quad x = \frac{-8}{4}$$

$x = \frac{3}{2}$ x = -2 *** Now check in original equation!

*** Note: If you get a decimal for your answer, follow the directions, or round to 4 decimal places!!!

Solve each equation using the quadratic formula:				
$1) x^2 - 7x + 6 = 0$	2) $x^2 + 4x - 5 = 0$	3) $x^2 + 3x + 2 = 0$		
4) $2x^2 + x - 1 = 0$	5) $3x^2 + 5x + 2 = 0$	6) $3x^2 + 5x + 2 = 0$		
7) $x^2 + 6x + 9 = 0$	8) $4x^2 - 4x + 1 = 0$	9) $x^2 + 10x = -25$		
10) $x^2 + x = 12$	11) $x^2 + 2x = 24$	12) $x^2 = x + 2$		
13) $x^2 + 8 = 6x$	14) $2x^2 - 10 = x$	15) $x^2 - 9 = 0$		
16) $5x^2 = 20$	17) $x^2 - 3x + 1 = 1$	18) $x^2 = 5x$		
$19) x^2 - 2x - 2 = 0$	$20) x^2 - 10x + 4 = 0$	21) $x^2 + 2x - 4 = 0$		
22) $x^2 - 2 = 4x$	$23) 2x^2 - 8x + 7 = 0$	24) $4x^2 = 2x + 1$		

For each of the following, figure out which type of equation you have been given, then choose the best method to solve. Do not forget to check! 1) 20 - (5/8)x = 40 2) 6(7x - 2) = 8(4x + 1) 3) 2(5x - 4) - 3(4x + 3) = -434) $x^{2} + 44 = 15x$ 5) $3x^{2} + 18x = 81$ 6) $3x^{2} = 5x + 5$ 7) 11x - 5 = 7x - 53 8) 6(3x + 1) + 5(10 - 4x) = 399) $\frac{1}{4}x - 33 = -49$ 10) $7x^2 - 1 = 3x$ 11) 9(3x + 1) = 8(5x + 6)12) $15x = x^2 - 16$ 13) $x^2 + 8x = 12$ 14) 9(4x + 7) - 6(7x + 10) = -5415) 44 = 20 - 2x16) $4x^2 - 128 = 16x$ 17) $3x^2 - 8x + 6 = x + 6$ 18) 7(6x + 2) = 10(3x + 5)19) $3x^2 + 13x - 12 = 9x^2 - 11x - 12$ 20) $2x^2 - 14 = 10x$